9 research outputs found

    Global mangrove deforestation and its interacting social-ecological drivers: a systematic review and synthesis

    Get PDF
    Globally, mangrove forests are substantially declining, and a globally synthesized database containing the drivers of deforestation and drivers’ interactions is scarce. Here, we synthesized the key social-ecological drivers of global mangrove deforestation by reviewing about two hundred published scientific studies over the last four decades (from 1980 to 2021). Our focus was on both natural and anthropogenic drivers with their gradual and abrupt impacts and on their geographic coverage of effects, and how these drivers interact. We also summarized the patterns of global mangrove coverage decline between 1990 and 2020 and identified the threatened mangrove species. Our consolidated studies reported an 8600 km2 decline in the global mangrove coverage between 1990 and 2020, with the highest decline occurring in South and Southeast Asia (3870 km2). We could identify 11 threatened mangrove species, two of which are critically endangered (Sonneratia griffithii and Bruguiera hainseii). Our reviewed studies pointed to aquaculture and agriculture as the predominant driver of global mangrove deforestation though their impacts varied across global regions. Gradual climate variations, i.e., sea-level rise, long-term precipitation, and temperature changes and driven coastline erosion, salinity intrusion and acidity at coasts, constitute the second major group of drivers. Our findings underline a strong interaction across natural and anthropogenic drivers, with the strongest interaction between the driver groups aquaculture and agriculture and industrialization and pollution. Our results suggest prioritizing globally coordinated empirical studies linking drivers and mangrove deforestation and global development of policies for mangrove conservation.info:eu-repo/semantics/publishedVersio

    A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area

    No full text
    Mining for resources extraction may lead to geological and associated environmental changes due to ground movements, collision with mining cavities, and deformation of aquifers. Geological changes may continue in a reclaimed mine area, and the deformed aquifers may entail a breakdown of substrates and an increase in ground water tables, which may cause surface area inundation. Consequently, a reclaimed mine area may experience surface area collapse, i.e., subsidence, and degradation of vegetation productivity. Thus, monitoring short-term landscape dynamics in a reclaimed mine area may provide important information on the long-term geological and environmental impacts of mining activities. We studied landscape dynamics in Kirchheller Heide, Germany, which experienced extensive soil movement due to longwall mining without stowing, using Landsat imageries between 2013 and 2016. A Random Forest image classification technique was applied to analyze land-use and landcover dynamics, and the growth of wetland areas was assessed using a Spectral Mixture Analysis (SMA). We also analyzed the changes in vegetation productivity using a Normalized Difference Vegetation Index (NDVI). We observed a 19.9% growth of wetland area within four years, with 87.2% growth in the coverage of two major waterbodies in the reclaimed mine area. NDVI values indicate that the productivity of 66.5% of vegetation of the Kirchheller Heide was degraded due to changes in ground water tables and surface flooding. Our results inform environmental management and mining reclamation authorities about the subsidence spots and priority mitigation areas from land surface and vegetation degradation in Kirchheller Heide

    Satellite image fusion to detect changing surface permeability and emerging urban heat islands in a fast-growing city

    No full text
    Padmanaban, R., Bhowmik, A. K., & Cabral, P. (2019). Satellite image fusion to detect changing surface permeability and emerging urban heat islands in a fast-growing city. PLoS ONE, 14(1), [e0208949]. DOI: 10.1371/journal.pone.0208949Rapid and extensive urbanization has adversely impacted humans and ecological entities in the recent decades through a decrease in surface permeability and the emergence of Urban Heat Islands (UHI). While detailed and continuous assessments of surface permeability and UHI are crucial for urban planning and management of landuse zones, they mostly involve time consuming and expensive field studies and single sensor derived large scale aerial and satellite imageries. We demonstrated the advantage of fusing imageries from multiple sensors for landuse and landcover (LULC) change assessments as well as for assessing surface permeability and temperature and UHI emergence in a fast growing city, i.e. Tirunelveli, Tamilnadu, India. IRS-LISSIII and Landsat-7 ETM+ imageries were fused for 2007 and 2017, and classified using a Rotation Forest (RF) algorithm. Surface permeability and temperature were then quantified using Soil-Adjusted Vegetation Index (SAVI) and Land Surface Temperature (LST) index, respectively. Finally, we assessed the relationship between SAVI and LST for entire Tirunelveli as well as for each LULC zone, and also detected UHI emergence hot spots using a SAVI-LST combined metric. Our fused images exhibited higher classification accuracies, i.e. overall kappa coefficient values, than non-fused images. We observed an overall increase in the coverage of urban (dry, real estate plots and built-up) areas, while a decrease for vegetated (cropland and forest) areas in Tirunelveli between 2007 and 2017. The SAVI values indicated an extensive decrease in surface permeability for Tirunelveli overall and also for almost all LULC zones. The LST values showed an overall increase of surface temperature in Tirunelveli with the highest increase for urban built-up areas between 2007 and 2017. LST also exhibited a strong negative association with SAVI. Southeastern built-up areas in Tirunelveli were depicted as a potential UHI hotspot, with a caution for the Western riparian zone for UHI emergence in 2017. Our results provide important metrics for surface permeability, temperature and UHI monitoring, and inform urban and zonal planning authorities about the advantages of satellite image fusion.publishersversionpublishe

    Modelling urban sprawl detection using remotely sensed data: a case of Сhennai, Tamilnadu

    No full text
    Urban sprawl propelled by rapid population growth leads to the shrinkage of productive agricultural lands and pristine forests in the suburban areas and, in turn, substantially alters ecosystem services. Hence, the quantification of urban sprawl is crucial for effective urban planning, and environmental and ecosystem management. Like many megacities in fast growing developing countries, Chennai, the capital of Tamilnadu and one of the business hubs in India, has experienced extensive urban sprawl triggered by the doubling of total population over the past three decades. We employed the Random Forest (RF) classification on Landsat imageries from 1991, 2003, and 2016, and computed spatial metrics to quantify the extent of urban sprawl within a 10km suburban buffer of Chennai. The rate of urban sprawl was quantified using Renyi’s entropy, and the urban extent was predicted for 2027 using land-use and land-cover change modeling. A 70.35% increase in urban areas was observed for the suburban periphery of Chennai between 1991 and 2016. The Renyi’s entropy value for year 2016 was ≥ 0.9, exhibiting a two-fold rate of urban sprawl. The spatial metrics values indicate that the existing urban areas of Chennai became denser and the suburban agricultural, forests and barren lands were transformed into fragmented urban settlements. The forecasted urban growth for 2027 predicts a conversion of 13670.33ha (16.57 % of the total landscape) of existing forests and agricultural lands into urban areas with an associated increase in the entropy value of 1.7. Our findings are relevant for urban planning and environmental management in Chennai and provide quantitative measures for addressing the social-ecological consequences of urban sprawl and the protection of ecosystem services

    Modelling Urban Sprawl Using Remotely Sensed Data: A Case Study of Chennai City, Tamilnadu

    No full text
    Urban sprawl (US), propelled by rapid population growth leads to the shrinkage of productive agricultural lands and pristine forests in the suburban areas and, in turn, adversely affects the provision of ecosystem services. The quantification of US is thus crucial for effective urban planning and environmental management. Like many megacities in fast growing developing countries, Chennai, the capital of Tamilnadu and one of the business hubs in India, has experienced extensive US triggered by the doubling of total population over the past three decades. However, the extent and level of US has not yet been quantified and a prediction for future extent of US is lacking. We employed the Random Forest (RF) classification on Landsat imageries from 1991, 2003, and 2016, and computed six landscape metrics to delineate the extent of urban areas within a 10 km suburban buffer of Chennai. The level of US was then quantified using Renyi’s entropy. A land change model was subsequently used to project land cover for 2027. A 70.35% expansion in urban areas was observed mainly towards the suburban periphery of Chennai between 1991 and 2016. The Renyi’s entropy value for year 2016 was 0.9, exhibiting a two-fold level of US when compared to 1991. The spatial metrics values indicate that the existing urban areas became denser and the suburban agricultural, forests and particularly barren lands were transformed into fragmented urban settlements. The forecasted land cover for 2027 indicates a conversion of 13,670.33 ha (16.57% of the total landscape) of existing forests and agricultural lands into urban areas with an associated increase in the entropy value to 1.7, indicating a tremendous level of US. Our study provides useful metrics for urban planning authorities to address the social-ecological consequences of US and to protect ecosystem services
    corecore